Spindles, Spindle Plaques, and Meiosis in the Yeast Saccharomyces Cerevisiae (hansen)

نویسندگان

  • Peter B. Moens
  • Ellen Rapport
چکیده

The intranuclear spindle of yeast has an electron-opaque body at each pole. These spindle plaques lie on the nuclear envelope. During mitosis the spindle elongates while the nuclear membranes remain intact. After equatorial constriction there are two daughted nuclei, each with one spindle plaque. The spindle plaque then duplicates so that two side-by-side plaques are produced. These move rapidly apart and rotate so that they bracket a stable 0.8 microm spindle. Later, during mitosis, this spindle elongates, etc. Yeast cells placed on sporulation medium soon enter meiosis. After 4 hr the spindle plaques of the more mature cells duplicate, producing a stable side-by-side arrangement. Subsequently the plaques move apart to bracket a 0.8 microm spindle which immediately starts to elongate. When this meiosis I spindle reaches its maximum length of 3-5 microm, each of the plaques at the poles of the spindle duplicates and the resulting side-by-side plaques increase in size. The nucleus does not divide. The large side-by-side plaques separate and bracket a short spindle of about 1 microm which elongates gradually to 2 or 3 microm. Thus there are two spindles within one nucleus at meiosis II. To the side of each of the four plaques a bulge forms on the nucleus. The four bulges enlarge while the original nucleus shrinks. These four developing ascospore nuclei are partially surrounded by cytoplasm and by a prospore wall which originates from the cytoplasmic side of the spindle plaque. Eventually the spore nuclei pinch off and the spore wall closes. In some of the larger yeast cells this development is completed after 8 hr on sporulation medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outer plaque assembly and spore encapsulation are defective during sporulation of adenylate cyclase-deficient mutants of Saccharomyces cerevisiae

Sporulation in diploid cells homozygous for the cyr1-2 mutation of the yeast Saccharomyces cerevisiae was examined. This mutation causes a defect in adenylate cyclase and temperature-sensitive arrest in the G1 phase of the mitotic cell cycle. The cyr1-2/cyr1-2 diploid cells were able to initiate meiotic divisions, but produced predominantly two-spored asci at the restrictive temperature. Temper...

متن کامل

Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae.

Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospo...

متن کامل

Meiotic Spindle Structure

Meiotic chromosome segregation leads to the production of haploid germ cells. During meiosis I (MI) the paired homologous chromosomes are separated. Meiosis II (MII) segregation leads to the separation of paired sister chromatids. In the budding yeast, Saccharomyces cerevisiae, both of these divisions take place in a single nucleus, giving rise to the four spored ascus. We have modeled the micr...

متن کامل

Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle

The three dimensional organization of microtubules in mitotic spindles of the yeast Saccharomyces cerevisiae has been determined by computer-aided reconstruction from electron micrographs of serially cross-sectioned spindles. Fifteen spindles ranging in length from 0.6-9.4 microns have been analyzed. Ordered microtubule packing is absent in spindles up to 0.8 micron, but the total number of mic...

متن کامل

Ipl1/Aurora-B is necessary for kinetochore restructuring in meiosis I in Saccharomyces cerevisiae

In mitosis, the centromeres of sister chromosomes are pulled toward opposite poles of the spindle. In meiosis I, the opposite is true: the sister centromeres move together to the same pole, and the homologous chromosomes are pulled apart. This change in segregation patterns demands that between the final mitosis preceding meiosis and the first meiotic division, the kinetochores must be restruct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 50  شماره 

صفحات  -

تاریخ انتشار 1971